RADNET

Information about source points of anthropogenic radioactivity

A Freedom of Nuclear Information Resource

Responses welcome:
FAX (207) 288-2725
cbm@davistownmuseum.org
or write to:
Center for Biological Monitoring 
Box 144
Hulls Cove, ME 04644
/cbm/
(207) 288-5126 



| Index | Introduction | Guide | Accidents | Definitions | Radionuclides | Protection Guidelines | Plumes | Baseline Data | Dietary Intake | Chernobyl | Source Points | Maine Yankee | Links | Bibliography | Alerts | Sponsor |
Website users can greatly assist the Center for Biological Monitoring by making a donation of 10 cents per page of information printed from the RADNET website.  Please mail your donations to our sponsor
The Davistown Museum, Box 144, Hulls Cove, ME 04664
Or see our fundraising information.  Thank you!

SECTION 10: CHERNOBYL FALLOUT DATA: ANNOTATED BIBLIOGRAPHY

Table of contents:

1. Introduction
2. General Bibliography
3. Hot Particles
4. Chernobyl Plume: Country-by-Country Summary:

RADNET EDITORIAL COMMENTS

As a preview to the annotated citations pertaining to Chernobyl-derived fallout, the editor of RADNET offers the following comments and observations:

2. CHERNOBYL: GENERAL BIBLIOGRAPHY



 
Fusco, Paul and Caris, Magdalena. (2001). Chernobyl Legacy: Twenty four minutes and zero seconds anti meridian. de.MO, Millbrook, NY.
  • A chilling and moving photo tour of the legacy of the Chernobyl accident.
  • The cesium contamination maps show fallout levels ranging up to 7,400,000 Bq/m2 in a spotty pattern over thousands of square miles to the north and northeast of Chernobyl, with lesser quantities of deposition on the European component of the map found later in the text.
  • The limited written text is poetic, informative, concise and haunting.

 
NOTICE TO THE READER: Levels of contamination cited within the Chernobyl data base are peak concentrations unless otherwise noted. Ground deposition activities varied widely in most areas impacted by the Chernobyl accident: A location receiving, for example, 40,000 Bq/m2 could be only a few kilometers from another location receiving an order of magnitude less deposition. Nurmijarvi, Finland, a location with real time data collection capabilities, recorded the highest air concentrations of any location cited in RADNET (over thirty Chernobyl-derived nuclides were observed); ground deposition activities at this location, while elevated, were typical of many locations receiving heavy rainfall associated fallout. The data cited for both ground deposition and contamination of abiotic and biotic media which follow are the highest readings in the survey being cited, unless otherwise indicated. 

ESTIMATED RELEASE OF LONG-LIVED RADIONUCLIDES FROM THE CHERNOBYL ACCIDENT

Aarkrog, A. (1994). Source terms and inventories of anthropogenic radionuclides. Riso National Laboratory, Roskilde, Denmark.
 

Radionuclide Total released radioactivity (Curies) 
137Cs 2,700,000
134Cs 1,350,000
90Sr 216,000
106Ru 948,000
144Ce 2,430,000
110mAg 40,500
125Sb 81,000
239,240Pu 1,480
238Pu 700
241Pu 135,000
241Am 162
242Cm 16,200
243,244Cm 162
SIZES OF CONTAMINATED TERRITORIES IN THE FORMER USSR
(Measured in thousands of curies per square meter)

Aarkrog, A., Tsaturov, Y. and Polikarpov, G.G. (1993). Sources to environmental radioactive contamination in the former USSR. Riso National Laboratory, Roskilde, Denmark.
 

Sizes of contaminated territories, km2
States 37-185 kBqm2 185-555 kBqm-2 0.55-1.5 MBqm-2 >1.5 MBq-2
Russia 48100 5450 2130 310
Byelorussia 29920 10170 4210 2150
Ukraine 37090 1990 820 640
Moldova 50 - -
Total 115160 17160 7160 3100
Aarkrog, A., Angelopoulos, A., Calmet, D., Delfanti, R., Florou, H., Permattei, S., Risica, S. and Romero, L. (1993). Radioactivity in Mediterranean waters: Report of working group II of CEC project MARINA-MED. Riso National Laboratory, Roskilde, Denmark.
 
1984 Aegean Sea Fish 137Cs 0.53 Bq/kg mean value
1984 Tryrhenian Sea Fish 137Cs 0.10 Bq/kg mean value
1986 Aegean Sea Fish 137Cs 4.9 Bq/kg mean value
1986 Black Sea Fish 137Cs 2.0 Bq/kg mean value
1990 Black Sea Fish 137Cs 3.3 Bq/kg mean value
1985 Tyrrhenian Sea Shellfish 137Cs 0.36 Bq/kg mean value
1986 Tyrrhenian Sea Shellfish 137Cs 14.0 Bq/kg mean value
1990 Tyrrhenian Sea Shellfish 137Cs 3.2 Bq/kg mean value
1990 Black Sea Surface sediments 137Cs 164.0 Bq/kg mean value
Aarkrog, A. (1988). The radiological impact of the Chernobyl debris compared with that from nuclear weapons fallout. J. Environ. Radioactivity. 6. pg. 151-162. Andersson, K.G. and Roed, J. (1994). The behavior of Chernobyl 137Cs, 134Cs and 106Ru in undisturbed soil: Implications for external radiation. J. Environ. Radioactivity. 22. pg. 183-196. Andersson, K.G. and Roed, J. (2006). Estimation of doses received in a dry-contaminated residential area in the Bryansk region, Russia, since the Chernobyl accident. Journal of Environmental Radioactivity, Volume 85, Issues 2-3, Amsterdam, The Netherlands. pg. 228-240 .

Anspaugh, L.R., Catlin, R.J. and Goldman, M. (1988). The global impact of the Chernobyl reactor accident. Science. 242. pg. 1513-1519.

Apsimon, H.M., Gudiksen, P., Khitrov, L., Rodhe, H. and Yoshikawa, T. (1988). Lessons from Chernobyl: Modeling the dispersal and deposition of radionuclides. Environment. 30(5) pg. 17-20. Apsimon, H.M., MacDonald, H.F. and Wilson, J.J.N. (1986). An initial assessment of the Chernobyl-4 reactor accident release source. J. Soc. Radiol. Prot. 6(3) pg. 109-119. Balter, Michael. (December 15, 1995). Radiation biology: Chernobyl's thyroid cancer toll. Science. 270(5243). pg. 1758. Bedyaev, S.T., et. al. (1991). The Chernobyl source term. Proc. Seminar on Comparative Assessment of the Environmental Impact of Radionuclides Released During Three Major Nuclear Accidents: Kyshtym, Windscale, Chernobyl. EVR-13574, CEC. pg. 71-91.

Beskorovajnyj, V.P., et. al. (1995). Radiation effects of collapse of structural elements of the sarcophagus. Sarcophagus Safety '94: Proceedings of an International Conference, Zeleny Mys, Chernobyl, Ukraine, March 14-18, 1994. OECD/NEA, Paris. pg. 196-202.

Beardsley, T. (1986). US analysis incomplete. Nature. 321. pg. 187. Begichev, S.N., Borovoi, A.A., Burlakova, E.V., A. Y. Gagarinsky, Demin, V.F., Khodakovsky, I.L. and Khurlev, A.A. (1990). Radioactive releases due to the Chernobyl accident. In: Fission product transport processes in reactor accidents. J.T. Rogers (ed.). Hemisphere.

Beninson, D. and Lindell, B. (1986). Chernobyl reactor accident: Report of a consultation, 6 May 1986. Report No. ICP/CEH. World Health Organization, Copenhagen, Denmark.

Borovoi, A.A. and Sich, A.R. (1995). The Chernobyl accident revisited, part II: The state of the nuclear fuel located within the Chernobyl sarcophagus. Nuclear Safety. 36 (1). Burkart, W. et. al. (1991). Assessing Chernobyl's radiological consequences. Nuclear Europe Worldscan. 1(3-4). pg. 27-30.

Buzulukov, Y.P. and Dobrynin, Y.L. (1993). Release of radionuclides during the Chernobyl accident. In: The Chernobyl Papers. Merwin, S. E. and Balonov, M.I., (eds.) Research Enterprises, Richland, WA. 1. pg. 321.

Cambrai, R.S. et. al. (1987). Observations on radioactivity from the Chernobyl accident. Nuclear Energy. 26. pg 77.

Devell, L. et. al. The Chenobyl reactor accident source term: Development of a consensus view. CSNI Report in preparation. OECD/NEA, Paris.

Dickerson, M.H. and Sullivan, T.J. (1986). ARAC response to the Chernobyl reactor accident. (Under U.S. Department of Energy Contract W-7405-Eng-48). Lawrence Livermore National Laboratory, Livermore, CA.

Dickman, S. (1988). IAEA's verdict on Chernobyl. Nature. 333. pg. 285. Editorial. Anxiety about reactor accident subsides. (May 8, 1986). Nature. 321. pg. 100. Eremeev, V.N., Ivanov, L.M., Kirwan, A.D. Jr. and Margolina, T.M. (1995). Amount of 137Cs and 134Cs radionuclides in the Black Sea produced by the Chernobyl accident. Journal of Environmental Radioactivity. 27(1). pg. 49-63.

Gittus, J.H., Hicks, D., Bonell, P.G., Clough, P.N., Dunbar, I.H., Egan, M.J., Hall, A.N., Hayns, M.R., Nixon, W., Bulloch, R.S., Luckhurst, D.P., Maccabee, A.R., Edens, D.J. (1988). The Chernobyl accident and its consequences. Report No. NOR 4200. United Kingdom Atomic Energy Authority, London.

Goldman, M. (1987). Recalculating the cost of Chernobyl. Science. 236 pg. 658-659. Goldman, M. (1987). Chernobyl: A radiobiological perspective. Science. 238. pg. 622-623. Gudiksen, P.H., Harvey, T.F. and Lange, R. (1989). Chernobyl source term, atmospheric dispersion and dose estimation. Health Physics. 57(5). pg. 697-706.

Gudiksen, P.H. and Lange, R. (1986). Atmospheric dispersion modeling of radioactivity releases from the Chernobyl event. Report No. UCRL- 95363, Preprint. Lawrence Livermore National Laboratory, Livermore, CA.

Hohenemser, C., Deicher, M., Ernst, A., Hofsass, H., Lindner, G. and Recknagel, E. (1986). Chernobyl: An early report. Environment. 28(5). pg. 6-43.
 
April 28, 1986 Forsmark, Sweden Ground deposition 132I 120,000 Bq/m2
April 28, 1986 Forsmark, Sweden Ground deposition 131I 4,000 Bq/m2
April 28, 1986 Forsmark, Sweden Rainwater 132I 839,000 Bq/l
April 30, 1986 Konstanz, Germany Ground deposition 132Te 87,000 Bq/m2
Hotzl, H., Rosner, G. and Winkler, R. (1989). Long-term behavior of Chernobyl fallout in air and precipitation. J. Environ. Radioactivity. 10. pg. 157-171. Institut de Protection et de Surete Nucleaire. (1986.) The Tchernobyl accident. Report No. IPSN 2/86, rev. 3. Institut de Protection et de Surete Nucleaire, Fontenay-aux-Roses.
 
April 26-May 6 Chernobyl Total activity released per family Noble gases 100%: 1x 108 Ci
April 26-May 6 Chernobyl T.A.R.P.F. Iodine 20%: 8.4 x 106
April 26-May 6 Chernobyl T.A.R.P.F. Cesium 15%: 1.2 x 106
April 26-May 6 Chernobyl T.A.R.P.F. Tellurium 15%: 1.0 x 107
April 26-May 6 Chernobyl T.A.R.P.F. Rutheniums and Rhodiums 4%: 1.6 x 107
April 26-May 6 Chernobyl T.A.R.P.F. Lanthanides 3%: 1.2 x 107
April 26-May 6 Chernobyl T.A.R.P.F. Zirconium 3%: 3.9 x 106
April 26-May 6 Chernobyl T.A.R.P.F. Actinides:
alpha activity
3%: 2.3 x 104
beta activity 3%: 2.3 x 106
International Atomic Energy Agency. (1986). The accident at Chernobyl nuclear power plant and its consequences. Information compiled for the IAEA expert's meeting August 25-26, 1986, Vienna, Austria, USSR State Committee on the Utilization of Atomic Energy. (IAEA translation). International Atomic Energy Agency. (1991). The International Chernobyl Project - Assessment of radiological consequences and evaluation of protective measures. Report by an International Advisory Committee. IAEA, Vienna.

International Atomic Energy Agency. (1991). The International Chernobyl Project, surface contamination maps. IAEA, Vienna.

International Atomic Energy Agency. (1991). The International Chernobyl Project, technical report. IAEA, Vienna.

Ilyin, L.A. and Pavlovskij, A.O. (1987). Radiological consequences of the Chernobyl accident in the Soviet Union and measures taken to mitigate their impact. IAEA Bulletin 4.

International Nuclear Safety Advisory Group. (1986). INSAG summary report on the post-accident review meeting on the Chernobyl accident (INSAG report to International Atomic Energy Agency general conference, Vienna, Austria, August 1986). Vienna. IAEA translation.

Jaworowski, Z. and Kownacka L. (1988). Tropospheric and stratospheric distributions of radioactive iodine and cesium after the Chernobyl accident. J. Environ. Radioact. 6. pg. 145-150.

Kirchner, G. and Noack, C.C. (1988). Core history and nuclide inventory of the Chernobyl core at the time of the accident. Nuclear Safety, 29(1). pg. 1-5.

Komarov, V.I. (1990). Radioactive contamination and decontamination in the 30 km zone surrounding the Chernobyl Nuclear Power Plant. Report No. IAEA-SM-306/124. In: Environmental contamination following a major nuclear accident, Vol. 2. Report No. STI/PUB/825. International Atomic Energy Agency, Vienna.

Krey, P.W. (1986). International data exchange and cooperative research. In: Environmental Measurements Laboratory: A compendium of the environmental measurements laboratory's research projects related to the Chernobyl nuclear accident: October 1, 1986. Report No. EML-460. U.S. Department of Energy, New York, NY. pg. 259-264.

Kryshev, I.I. (1995). Radioactive contamination of aquatic ecosystems following the Chernobyl accident. J. Environ. Radioact. 27(3). pg. 207-219.

Likhtarev, L.A. et. al. (1989). Radioactive contamination of water ecosystems and sources of drinking water. Medical Aspects of the Chernobyl Accident. TECDOC 516. IAEA, Vienna.

Morrey, M., Brown, J., Williams, J.A., Crick, M.J., Simmonds, J.R. and Hill, M.D. (1987). A preliminary assessment of the radiological impact of the Chernobyl reactor accident on the population of the European community. (Report from Health and Safety Directorate No. V/E/1 funded under CEC contract number 86 398). Commission of the European Communities, Luxembourg.
 
May 1986 S. Germany Ground deposition 131I 240,000 Bq/m2
May 1986 S. Germany Milk 131I 17,000 Bq/l

Oak Ridge National Laboratory. The use of Chernobyl fallout data to test model predictions of the transfer of 131I and 137Cs from the atmosphere through agricultural food chains. Report CONF-910434-7. F. O. Hoffman Oak Ridge National Laboratory, TN.

OECD. (1987). The radiological impact of the Chernobyl accident in OECD countries. Organization for Economic Cooperation and Development, Paris.

OECD. (1989). The influence of seasonal conditions on the radiological consequences of a nuclear accident. Proceedings of an NEA workshop, Paris, September 1988. OECD/NEA, Paris.

OECD, NRC and IAEA. (May 1995). Sarcophagus safety '94 the state of the Chernobyl Nuclear Power Plant Unit 4. 66-95-10-1. ISBN 92-64-14437-4. Organization for Economic Cooperation and Development, Paris.

OECD. (November 1995). Chernobyl ten years on: Radiological and health impact: An assessment by the NEA Committee on Radiation Protection and Public Health. Organization for Economic Cooperation and Development, Paris.
Weapons testing fallout vs. Chernobyl fallout vs. US reactor accident:
Maximum annual weapons testing derived 137Cs deposition: 1,000 Bq/m2

(See Riso National Laboratory Cumulative Fallout Record: RAD 9:2)

OECD-NEA definition of "main" 137Cs Chernobyl deposition: >555,000 Bq/m2

(See above citation)

FDA-FEMA Emergency Action Guideline for radiocesium ground deposition following a nuclear reactor accident in the United States: 90 microcuries radiocesium/m2 = 3,308,323 Bq/m2

(begin destroying rather than storing contaminated food: RAD 6: 2-7 and RAD 12: 3)

OECD. (1996). The Chernobyl reactor accident source term. Report No. OCDE/GD(96)12. Organization for Economic Cooperation and Development, Paris.

Parmentier, N. and Nenot, J-C. (1989). Radiation damage aspects of the Chernobyl accident. Atmospheric Environment. 23. pg. 771-775.

Powers, D.A., Kress, T.S. and Jankowski, M.W. (1987). The Chernobyl source term. Nuclear Safety. 28(1). pg. 10-28.

Rezzoug, S. Michel, H., Fernex, F., Barci-Funel, G., and Barci, V. (2006) Evaluation of 137Cs fallout from the Chernobyl accident in a forest soil and its impact on Alpine Lake sediments, Mercantour Massif, S.E. France. Journal of Environmental Radioactivity, Volume 85, Issues 2-3, Amsterdam, The Netherlands. pg. 369-379 .

Scheid, W., et. al. (1993). Chromosome aberrations in human lymphocytes apparently induced by Chernobyl fallout. ???? 64(5). pg. 531-534.

Scheid, W., Weber, J. and Traut, H. (1993). Chromosome aberrations induced in the lymphocytes of pilots and stewardesses. Naturwissenschaften. 80. pg. 528-530.

Shcherbak, Y. (April 1996). Ten years of the Chernobyl era. Scientific American.

Sich, A.R. (1994). Chernobyl accident management actions. Nuclear Safety. 35(1).

Sich, A.R. (1994). The Chernobyl accident revisited: Source term analysis and reconstruction of events during the active phase. (Ph.D. Thesis). Massachusetts Institute of Technology, Cambridge, MA.

Sich, A.R. (1995). The Chernobyl accident revisited, part II: The state of the nuclear fuel located within the Chernobyl sarcophagus phase. Nuclear Safety. 36(1). pg. 1-32.

Sich, A.R. (1996). The Chernobyl accident revisited, part III: Chernobyl source term release dynamics and reconstruction of events during the active phase. Nuclear Safety. 36(2). pg. 195-217. Sich, A.R. (1996). The Chernobyl active phase: Why the "official view" is wrong. Nuclear Engineering International. 40(501). pg. 22-25. Sich, A.R. (1996). Through the looking glass. Nuclear Engineering International. 41(501). pg. 26-27. Special issue: International Chernobyl Project. (1992). J. Environ. Radioactivity. 17(2-3). United Nations. (August 29, 2003). Optimizing the international effort to study, mitigate and minimize the consequences of the Chernobyl disaster: Report of the Secretary-General. A/58/332. United Nations General Assembly. http://www.chernobyl.info/files/doc/UNRepOptimizingIntEff.pdf.

U. S. Department Of Energy. (1987). Health and environmental consequences of the Chernobyl Nuclear Power Plant accident. Report No. DOE/ER-0332. Committee on the Assessment of Health Consequences in Exposed Populations, U. S. Department of Energy, Washington, D.C.

U.S. Nuclear Regulatory Commission. (1987). Report on the accident at the Chernobyl nuclear power station. Report No. NUREG-1250, Rev. 1. Government Printing Office, Washington, D.C. Volchok, H.L. and Chieco, N. (1986). Environmental Measurements Laboratory: A compendium of the Environmental Measurements Laboratory's research projects related to the Chernobyl nuclear accident: Environmental report October 1, 1986. Report No. EML-460. Department of Energy, New York, NY. Warman, E.A. (1987). Soviet and far-field radiation measurements and an inferred source term from Chernobyl. Report No. TP87-13. Stone and Webster Engineering Corp, Boston, MA.
Core Inventory of Radionuclides
Radionuclide Half-Life Inventory @ April 26
85Kr 3,930 3.3 x 1016 0.89
133Xe 5.27 7.3 x 1018 196
131I 8.04 3.1 x 1018 85
132Te 3.25 3.3 x 1018 90
134Cs 750 1.9 x 1017 5.0
137Cs 1.1 x 104 2.9 x 1017 7.8
99Mo 2.8 7.3 x 1019 1,980
95Zr 65.6 4.9 x 1018 135
103Ru 39.5 5.0 x 1018 133
106Ru 368 2.0 x 1018 54
140Ba 12.8 5.3 x 1018 142
141Ce 32.5 5.6 x 1018 152
144Ce 284 3.2 x 1018 86
89Sr 53 2.3 x 1018 62
90Sr 1.02 x 104 2.0 x 1017 5.4
239Np 2.35 3.6 x 1018 98
238Pu 3.15 x 104 1.0 x 1015 0.027
239Pu 8.9 x 106 8.5 x 1014 0.023
240Pu 2.4 x 106 1.2 x 1015 0.32
241Pu 4,800 1.7 x 1017 4.6
242Cm 164 2.5 x 1016 0.70

Webb, G.A.M., Simmonds, J.R. and Wilkins, B.T. (1986). Radiation levels in Eastern Europe. Nature. 321. pg. 821-822.
 
29-30 April Poland Milk 131I 2,000 Bq/l
1-4 May Hungary Milk 131I 2,600 Bq/l

Williams, D. (1994). Chernobyl, eight years on. Nature. 371. pg. 556.

Wirth, E., van Egmond, N.D. and Suess, M.J. (1986). Assessment of radiation dose commitment in Europe due to the Chernobyl accident: Report on a WHO meeting: Bilthoven, 25-27 June 1986. Report No. ISH-HEFT 108. Institut fur Strahlenhygiene des Bundesgesundheitsamtes, Munchen.

World Health Organization. Health hazards from radiocesium following the Chernobyl nuclear accident: Report on a WHO meeting. Environmental Health. 24. World Health Organization. (September 8, 1986). Working group on assessment of radiation dose commitment in Europe due to the Chernobyl accident: Bilthoven, 25-27 June 1986. Report No. ICP/COR 129(s) Rev 1. 5134V. World Health Organization, Copenhagen, Denmark.
 
May 1986 W. Europe Ground deposition 131I +/- 1,000,000 Bq/m2
May 1986 W. Europe Ground deposition 137Cs +/- 140,000 Bq/m2
WHO Regional Office for Europe. (1989). Health hazards from radiocesium following the Chernobyl nuclear accident: Report on a WHO working group. J. Environ. Radioactivity. 10(3). pg. 257-296.
| Next Part of This Section | Top of This Section | Next Section |

| Index | Introduction | Guide | Accidents |Definitions | Radionuclides | Protection Guidelines | Plumes | Baseline Data | Dietary Intake | Chernobyl | Source Points | Maine Yankee | Links | Bibliography | Alerts | Sponsor |